

www.ti.com

6-String 400-mA WLED Driver with Independent PWM Dimming for Each String

Check for Samples: TPS61196

FEATURES

- 8V to 30V Input Voltage
- Up to 120V Output Voltage
- 100KHz to 800kHz Programmable Switching Frequency
- Adaptive Boost Output for LED Voltages
- Six Current Sinks, 200mA Continuous Output / 400mA Pulse Output for Each String
- ±1.5% Current Matching Between Strings
- High Precision PWM Dimming Resolution up to 5000:1
- Programmable Over-voltage Threshold at Output and Each Current Sink
- Programmable Under-voltage Threshold at Input with Adjustable Hysteresis
- Adjustable Soft Start Time Independent of Dimming Duty Cycle
- Built-in LED Open/Short Protection
- Built-in Schottky Diode Open/Short Protection
- Built-in ISET Short Protection
- Built-in IFB Short Protection
- Thermal Shutdown
- 28L HTSSOP Package with PowerPAD

APPLICATIONS

- LCD TV Backlight
- Scan Mode LCD TV Backlight

DESCRIPTION

The TPS61196 provides a highly integrated solution for LCD TV backlight with an independent PWM dimming function for each string. This device is a current mode boost controller driving up to six WLED strings with multiple LEDs in series. Each string has an independent current regulator providing a LED current adjustable from 50mA to 400mA within \pm 1.5% matching accuracy. The minimal voltage at the current sink is programmable in the range of 0.3V to 1.0V to fit with different LED current settings. The input voltage range for TPS61196 is from 8V to 30V. The TPS61196 adjusts the boost controller's output voltage automatically to provide only the voltage required by the LED string with the largest forward voltage drop plus the minimum required voltage at that string's IFB pin, thereby optimizing the driver's efficiency. Its switching frequency is programmed by an external resistor from 100kHz to 800kHz.

The TPS61196 supports direct PWM brightness dimming. Each string has an independent PWM control input. During the PWM dimming, the LED current is turned on/off at the frequency and duty cycle which are determined by the external PWM signal. The PWM frequency ranges from 90Hz to 22kHz.

The TPS61196 integrates over current protection, output short circuit protection, ISET short to ground protection, diode open and short protection, LED open and short protection, and over temperature shutdown circuit. In addition, the TPS61196 can detect the IFB pin short to ground to protect the LED string. The device also provides programmable input under-voltage lockout threshold and output overvoltage protection threshold.

The TPS61196 has a built-in linear regulator which steps down the input voltage to the VDD voltage for powering the internal circuitry. An soft start circuit is implemented internally to work with an external capacitor to adjust the soft startup time to minimize the in-rush current during boost converter startup. The device is available in 28-pin HTSSOP package with powerPAD providing good thermal performance.

SIMPLIFIED SCHEMATIC CIRCUIT

Figure 1. Typical Application of TPS61196

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TPS61196

SLVSBG1C-OCTOBER 2012-REVISED FEBRUARY 2013

TEXAS INSTRUMENTS

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION⁽¹⁾

T _A	PACKAGE	ORDERING PART NUMBER	TOP MARK
-40°C to 85°C	28-Pin HTSSOP	TPS61196PWPR	TPS61196

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		VALUE	Ξ		
		MIN	MAX	UNIT	
	Pin VIN	-0.3	33		
	Pin FAULT	-0.3	VIN		
	Pin IFB1 to IFB6	-0.3	40		
λ (altore range (2)	Pin FBP, ISET, ISNS, IFBV	-0.3	3.3	V	
voltage range	Pin EN, PWM1 to PWM6	-0.3	20	v	
	Pin GDRV	-0.3	7.0		
	Pin GDRV 10ns transient	-2.0	9.0		
	All other pins	-0.3	7.0		
	НВМ		2	kV	
ESD rating	MM		200	V	
	CDM		1	kV	
Continuous power dissipation See Thermal Inform		ation Table			
Operating junction temp	perature range	–40 150 °C		°C	
Storage temperature ra	nge	-65 150 °C		°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal

THERMAL INFORMATION

		TPS61196	
		PWP (28 PINS)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	33.8	
θ _{JCtop}	Junction-to-case (top) thermal resistance	18.8	
θ_{JB}	Junction-to-board thermal resistance	15.6	°C/M
Ψ _{JT}	Junction-to-top characterization parameter	0.6	C/W
Ψ_{JB}	Junction-to-board characterization parameter	15.4	
θ _{JCbot}	Junction-to-case (bottom) thermal resistance	2.5	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

		MIN	NOM MAX	UNIT
V _{IN}	Input voltage range	8	30	V
V _{OUT}	Output voltage range	V _{IN}	120	V
L ₁	Inductor	10	100	μH
C _{IN}	Input capacitor	10		μF
C _{OUT}	Output capacitor	22	220	μF
f _{SW}	Boost regulator switching frequency	100	800	kHz
f _{DIM}	PWM dimming frequency	0.09	22	kHz
T _A	Operating ambient temperature	-40	85	°C
TJ	Operating junction temperature	-40	125	°C

(1) Customers need to verify the component value in their application if the values are different from the recommended values.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 24V, T_A = -40°C to 85°C, typical values are at T_A = 25°C, C1 = 10µF, C2 = 2.2µF, C3 = 1.0µF, EC1 = EC2 = 100µF (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SU	PPLY					
V _{IN}	Input voltage range		8		30	V
V _{VIN_UVLO}	Under voltage lockout threshold	V _{IN} falling		6.5	7.0	V
V _{VIN_HYS}	VIN UVLO hysteresis			300		mV
I _{q_VIN}	Operating quiescent current into VIN	Device enabled, no switching, V_{IN} = 30 V			2.0	mA
I _{SD}	Shutdown current				25 50	μΑ
V _{DD}	Regulation voltage for internal circuit	0 mA < I _{DD} < 15 mA	5.7	6.0	6.3	V
EN and PW	Mx					
V _H	Logic high input on EN,PWMx	$V_{IN} = 8 V \text{ to } 30 V$	1.8			V
VL	Logic Low input on EN, PWMx	$V_{IN} = 8 V \text{ to } 30 V$			0.8	V
R _{PD}	Pull-down resistance on EN, PWMx		0.8	1.6	3.0	MΩ
UVLO					·	
V _{UVLOTH}	Threshold voltage at UVLO pin		1.204	1.229	1.253	V
I _{UVLO}	UVLO input bias current	$V_{UVLO} = V_{UVLOTH} - 50 \text{ mV}$ $V_{UVLO} = V_{UVLOTH} + 50 \text{ mV}$	-0.1 -4.3	-3.9	0.1 –3.3	μA
SOFT STAR	T					
I _{SS}	Soft start charging current	PWM ON, V _{REF} <2.0V PWM ON, V _{REF} >2.0V		200 10		μA
CURRENT I	REGULATION					
VISET	ISET pin voltage		1.217	1.229	1.240	V
I _{ISET_P}	ISET short to ground protection threshold		120	150	180	μA
K _{ISET}	Current multiple IIFB/IISET	$I_{ISET} = 32.56 \mu A, V_{IFB} = 0.5 V$	3932	3992	4052	
I _{IFB(AVG)}	Current accuracy	$I_{ISET} = 32.56 \mu A, V_{IFB} = 0.5 V$	127.4	130	132.6	mA
K _{IFB(M)}	Current matching; (I _{FB(MAX)} - I _{FB(MIN)})/2I _{FB(AVG)}	$I_{ISET} = 32.56 \mu A, V_{IFB} = 0.5 V$		0.5%	1.5%	
I _{IFB_LEAK}	IFB pin leakage current at dimming off	IFB voltage < 40 V			1	μA
I _{IFB_max}	Current sink max output current	V _{IFBV} = 350 mV	130			mA

SLVSBG1C-OCTOBER 2012-REVISED FEBRUARY 2013

EXAS

ELECTRICAL CHARACTERISTICS (continued)

 V_{IN} = 24V, T_A = -40°C to 85°C, typical values are at T_A = 25°C, C1 = 10µF, C2 = 2.2µF, C3 = 1.0µF, EC1 = EC2 = 100µF (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IFB REGULA	3 REGULATION VOLTAGE					
V _{IFB}	Regulation voltage at IFB	Measured on V_{IFB} (min), other IFB voltages are 0.5V above V_{IFB} (min). I_{IFB} = 130 mA, V_{IFBV} = 0.5 V		508		mV
I _{IFBV}	IFB Regulation voltage setting sourcing current at IFBV	V _{IFBV} = 0.5 V	0.247	0.25	0.253	I _{ISET}
VIFBV	IFBV voltage setting range		0.3		1.0	V
BOOST REF	ERENCE VOLTAGE					
V _{REF}	Reference voltage range for Boost Controller		0		3.1	V
I _{REF_LEAK}	Leakage current at REF pin		-25		25	nA
OSCILLATO	R					
f _{SW}	Switching frequency	R _{FSW} = 200 kΩ	187	200	213	kHz
V _{FSW}	FSW pin reference voltage			1.8		V
D _{max}	Maximum duty cycle	f _{SW} = 200 kHz	90%	94%	98%	
t _{on(min)}	Minimum pulse width			200		ns
V _{FSW_H}	Logic high input voltage		3.5			V
V _{FSW_L}	Logic low input voltage				0.5	V
ERROR AM	PLIFIER				,	
I _{SINK}	Comp pin sink current	$V_{OVP} = V_{REF} + 200 \text{mV}, V_{COMP} = 1 \text{V}$		20		μA
ISOURCE	Comp pin source current	$V_{OVP} = V_{REF} - 200 \text{mV}, V_{COMP} = 1 \text{V}$		20		μA
Gm _{EA}	Error amplifier transconductance		90	120	150	μS
R _{EA}	Error amplifier output resistance			20		MΩ
f _{EA}	Error amplifier crossover frequency			1000		kHz
GATE DRIVE	ER					
R _{GDRV(SRC)}	Gate driver impedance when sourcing	$V_{DD} = 6 \text{ V}, \text{ I}_{GDRV} = -20 \text{ mA}$		2	3	Ω
R _{GDRV(SNK)}	Gate driver impedance when sinking	$V_{DD} = 6 \text{ V}, \text{ I}_{GDRV} = 20 \text{ mA}$		1	1.5	Ω
I _{GDRV(SRC)}	Gate driver source current	$V_{GDRV} = 5 V$	200			mA
I _{GDRV(SNK)}	Gate driver sink current	V _{GDRV} = 1 V	400			mA
V _{ISNS(OC)}	Overcurrent detection threshold	V_{IN} = 8 V to 30 V, T_J = 25°C to 125°C	376	400	424	mV
OVER VOLT	AGE PROTECTION (OVP)					
V _{OVPTH}	Output voltage OVP threshold		2.95	3.02	3.09	V
I _{OVP}	Leakage current		-100	0	100	nA
V _{IFB_OVP}	IFBx over voltage threshold	PWM ON		38		V
LED SHORT	DETECTION					
I _{FBP}	LED short detection sourcing current	V _{FBP} = 1 V	0.247	0.25	0.253	I _{ISET}
FAULT INDI	CATOR					
I _{FLT_H}	Leakage current in high impedance	V _{FLT} = 24 V		1		nA
I _{FLT_L}	Sink current at low output	V _{FLT} = 1 V	1	2		mA
THERMAL S	HUTDOWN					
T _{shutdown}	Thermal shutdown threshold			150		°C
T _{hys}	Thermal shutdown threshold hysteresis			15		°C

www.ti.com

DEVICE INFORMATION

PIN FUNCTIONS

PIN				
NUMBER (PWP)	NAME	DESCRIPTION		
1	UVLO	Low input voltage lock out. Use a resister divider from VIN to this pin to set the UVLO threshold		
2	EN	Enable and disable pin. EN high=Enable, EN low=Disable		
3,4,5,6,7,8	PWM1 to PWM6	PWM signal input pins. The frequency of PWM signal is in the range of 90Hz to 22kHz		
9	FBP	LED cross-short protection threshold program pin. Use a resistor to GND to set the threshold		
10	ISET	Connecting a resistor to the pin programs the IFB pin current level for full brightness (i.e., 100% dimming)		
11	IFBV	Minimum feedback voltage setting for LED strings		
12,13,14,15,16, 17	IFB1 to IFB6	Regulated current sink input pins		
18	AGND	Analog ground		
19	OVP	Over-voltage protection detection input. Connect a resistor divider from output to this pin to program the OVP threshold.		
20	COMP	Loop compensation for the boost converter. Connect a RC network to make loop stable		
21	REF	Internal reference voltage for the boost converter. Use a capacitor at this pin to adjust the soft start time. When two chips operate in parallel, connect the master's REF pin to the slave's COMP pin.		
22	PGND	External MOSFET current sense ground input		
23	ISNS	External MOSFET current sense positive input		
24	GDRV	External switch MOSFET gate driver output		
25	VDD	Internal regulator output for IC internal power supply. Connect a 1.0µF ceramic capacitor to this pin.		
26	FSW	Switching frequency setting pin. Use a resistor to set the frequency between 100kHz to 800kHz. An external input voltage above 3.5V or below 0.5V disables the internal clock and makes the device as slave device		
27	FAULT	Fault indicator. Open-drain output. Output high impedance when fault conditions happen		
28	VIN	Power supply input pin		

TPS61196

SLVSBG1C-OCTOBER 2012-REVISED FEBRUARY 2013

TEXAS INSTRUMENTS

www.ti.com

FUNCTIONAL BLOCK DIAGRAM

www.ti.com

TYPICAL CHARACTERISTICS Table 1. TABLE OF GRAPHS

Figure 1 as test circuit					
TITLE	TEST CONDITIONS	FIGURE			
Efficiency (20LEDs)	20 LEDs(V _{OUT} = 60V), I _{OUT} = 0.78A, 200Hz Dimming Frequency	Figure 2			
Efficiency (16LEDs)	16 LEDs(V _{OUT} = 50V), I _{OUT} = 0.78A, 200Hz Dimming Frequency	Figure 3			
Dimming Linearity	20 LEDs(V _{OUT} = 60V), V _{IN} = 24V	Figure 4			
Dimming Linearity at Low Dimming Duty Cycle	20 LEDs(V _{OUT} = 60V), V _{IN} = 24V	Figure 5			
DC Load Efficiency	f _{SW} = 200 kHz	Figure 6			
Switching Frequency Setting	$V_{IN} = 24V$	Figure 7			
Recommended Minimum Headroom Voltage		Figure 8			
Boost Switching Waveform	$V_{IN} = 24V, V_{OUT} = 74V, I_{OUT} = 0.78A$	Figure 9			
Startup Waveform (1% Dimming)	200Hz Dimming Frequency, 1% Dimming Duty Cycle	Figure 10			
Startup Waveform (100% Dimming)	200Hz Dimming Frequency, 100% Dimming Duty Cycle	Figure 11			
Dimming Waveform (0.1% Dimming)	200Hz Dimming Frequency, 0.1% Dimming Duty Cycle	Figure 12			
Dimming Waveform (2% Dimming)	200Hz Dimming Frequency, 2% Dimming Duty Cycle	Figure 13			
Shutdown Waveform (1% Dimming)	200Hz Dimming Frequency, 1% Dimming Duty Cycle	Figure 14			
Shutdown Waveform (100% Dimming)	200Hz Dimming Frequency, 100% Dimming Duty Cycle	Figure 15			
LED Open Protection (1% Dimming)	200Hz Dimming Frequency, 1% Dimming Duty Cycle	Figure 16			
LED Open Protection (100% Dimming)	200Hz Dimming Frequency, 100% Dimming Duty Cycle	Figure 17			
LED Short Protection (1% Dimming)	200Hz Dimming Frequency, 1% Dimming Duty Cycle	Figure 18			
LED Short Protection (100% Dimming)	200Hz Dimming Frequency, 100% Dimming Duty Cycle	Figure 19			
IFB Short to Ground Protection (1% Dimming)	200Hz Dimming Frequency, 1% Dimming Duty Cycle	Figure 20			
IFB Short to Ground Protection (100% Dimming)	200Hz Dimming Frequency, 100% Dimming Duty Cycle	Figure 21			

EFFICIENCY (16LEDs)